MBL THROUGH MPS

Bryan Clark and David Pekker

Dresden - May 15, 2014
Many Body Localization...

It has been suggested that interactions + (strong) disorder produce a many-body localized phase at all ‘temperatures.’

\[
H = \sum_{i=1}^{L} [h_i S_i^z + J \sum \hat{S}_i \cdot \hat{S}_{i+1}]
\]

\[h_i \in [-W, W] \]
A many body localized phase ...

has the following phenomenological properties:

* doesn’t thermalize
* is localized.
* has atypical eigenstates
Thermalization

Large quantum system

Small subsystem: ρ_{small}

Thermalized if, in equilibrium, $\rho_{\text{small}} = \rho_{\text{thermal}}$ at the temperature that corresponds to the energy density of the system.
What thermalizes?

States which obey the eigenstate thermalization hypothesis...

\[\Psi = \alpha_0 |\Psi_0\rangle + \alpha_1 |\Psi_1\rangle + \ldots + \alpha_n |\Psi_n\rangle \]

\[e^{itH} \Psi = \alpha_0 e^{itE_0} |\Psi_0\rangle + \alpha_1 e^{itE_1} |\Psi_1\rangle + \ldots + \alpha_n e^{itE_n} |\Psi_n\rangle \]

To thermalize, nearby eigenstates must look the same with respect to local observables.

Eigenstate Thermalization Hypothesis
and what doesn’t thermalize?

States which don’t obey the eigenstate thermalization hypothesis...

Integrable systems are one such system....

which don’t thermalize because of the extensive number of conserved quantities.

Instead the density matrix approaches the generalized Gibbs Ensemble ρ_{GGE}.

We should anticipate then, that MBL phases shouldn’t obey ETH and should be ‘like’ integrable systems.
A many body localized phase ...

has the following phenomenological properties:

- doesn’t thermalize
- is localized.
- has atypical eigenstates
What localizes...

Anderson Insulators!

Noninteracting problem:

Single \approx orbitals: ‘Support’ on a few sites

Inverse participation ratio: \[
\frac{\sum_x |\Psi(x)|^4}{\sum_x |\Psi(x)|^2}
\]

Single particle eigenstates are localized

Interacting systems don’t have s.p.o

How should we think of localization in an interacting system?

\[
H = t \sum_{\langle i,j \rangle} c_i^\dagger c_j + \sum_i w_i c_i^\dagger c_i
\]

$w_i \in [-W, W]$
Localization in Fock space

Each many body basis state is on a vertex on the hypercube.

The Hamiltonian connects vertices through edges.

Localization means eigenstates have ‘support’ on only a few sites.

Suggested by Bosca, Aleiner, Altschuler (2001) for many body localization.
A many body localized phase ...

has the following phenomenological properties:

- doesn’t thermalize
- is localized.
- has atypical eigenstates
Atypical Eigenstates

Low Entanglement (obeys area law)

Notice that there is interesting quantum effects happening at non-zero ‘temperature’

Strange Spectral Statistics....

Poisson vs. Gaussian orthogonal ensemble
How should we understand these strange phenomena?

We need a unifying understanding of MBL?
A wave function is an object that eats a configuration of spins and generates a number: $\Psi(\uparrow, \downarrow, \uparrow) = 0.3$

A product state eats a configuration of spins and generates a number by taking the product of complex numbers.

$$
\Psi(\uparrow, \downarrow, \uparrow) = M_1^{\uparrow} M_2^{\downarrow} M_3^{\uparrow}
$$

A matrix product state (MPS) eats a configuration of spins and generates a number by taking the product of matrices/vectors.

$$
\Psi(\uparrow, \downarrow, \uparrow) = M_i^{\uparrow} M_{i,j}^{\downarrow} M_j^{\uparrow}
$$

MPS are spatially local: A change in the matrix of one site decays exponentially.

MPS are spatially local: They are connected to product states by constant depth unitary circuits.
A new basis

What is the right basis to think of many-body localization in?

The typical basis

\[H = \sum_{i=1}^{L} [h_i S_i^z + J \sum \hat{S}_i \cdot \hat{S}_{i+1}] \]

\[h_i \in [-W, W] \]

In the product state basis, there is no indication that anything qualitative happens as the disorder gets larger.

Increasing Disorder
A Schmidt Decomposed Basis

\[|\Psi_G\rangle \equiv \sum_i |a_i\rangle |b_i\rangle \]

Basis: \{ |a_1\rangle |b_1\rangle, |a_2\rangle |b_2\rangle, \ldots |a_9\rangle |b_9\rangle \}

\[|\Psi_G\rangle \equiv \sum_i |\alpha_i\rangle |\beta_i\rangle \]

\{ |\alpha_1\rangle |\beta_1\rangle, |\alpha_2\rangle |\beta_2\rangle, \ldots |\alpha_9\rangle |\beta_9\rangle \}

This basis is local MPS.

(Can be generalized for more basis elements)
Am I a basis? \[\langle \Psi_i | \Psi_j \rangle = \delta_{ij} \]

Not exactly ..., but pretty close.

Overlap Matrix
We want a basis where the Hamiltonian becomes ‘essentially’ block diagonal.
Seeing the transition ...

Apply rotation into blocks...

Check the number of off-diagonal terms.

Almost a ground state property....

Disorder Strength

Increasing Disorder
Getting the eigenstates

\[\hat{H}_{\text{eff}}[i] \]
\[\Psi_0[i] \]
\[\Psi_1[i] \]
\[\Psi_2[i] \]
\[\vdots \]
\[\Psi_n[i] \]
\[\hat{H}_{\text{eff}}[j] \]
\[\Psi_0[j] \]
\[\Psi_1[j] \]
\[\Psi_2[j] \]
\[\vdots \]
\[\Psi_n[j] \]

‘Single-site’ quasi-particles on sites i and j.

This tells us about the structure of the block diagonal Hamiltonian but not as much the eigenstates.
Ground State: \[
\uparrow \downarrow \downarrow \downarrow \uparrow
\]

Excited State: \[
\uparrow \downarrow \downarrow \uparrow \uparrow \uparrow
\]

Highly Excited State: \[
\downarrow \uparrow \uparrow \downarrow \downarrow \downarrow
\]

The product basis are eigenstates if we turn interactions off.

We need a suitable generalization of the product state basis for interacting systems.

\[
H = \sum_{i=1}^{L}[h_i S_i^z]
\]

\[
h_i \in [−W, W]
\]
\[H = \sum_{i=1}^{L} [h_i S_i^z + J \sum \hat{S}_i \cdot \hat{S}_{i+1}] \]
\[h_i \in [-W, W] \]

Ground State: \(A^{1,\sigma_1} A^{2,\sigma_2} A^{3,\sigma_3} A^{4,\sigma_4} A^{5,\sigma_5} \)

Excited State: \(A^{1,\sigma_1} B^{2,\sigma_2} A^{3,\sigma_3} A^{4,\sigma_4} A^{5,\sigma_5} \)

Highly Excited State: \(B^{1,\sigma_1} B^{2,\sigma_2} A^{3,\sigma_3} B^{4,\sigma_4} A^{5,\sigma_5} \)

Creation operators change a matrix in the MPS.

How do we choose the \(A^i \) and \(B^i \) matrices?
Choosing A and B

\[U H_{bd} U^\dagger = H \]

Given a product state, we produce a MPS using \(U \).

We can read \(A_i \) and \(B_i \) off of \(U \) (represented as a MPO).

Gauge transformation transform to other eigenstates.

Creation operators create MPS \(A_i \) or \(B_i \)
How should we understand these strange phenomena?

We need a unifying understanding of MBL?

1. Block Diagonal
2. Eigenstates are MPS
Thermalization

Each block has unrelated eigenstates

Similar energies have different properties

Violation of ETH

Extensive number of blocks

Extensive number of conservation laws

‘Integrable’
Localization in Fock space

An eigenstate only lives on a small fraction of Hilbert space since it only contains weight on its ‘block’ (mainly)
Atypical Eigenstates

Low Entanglement (obeys area law)

Increasing disorder

Structure implies MPS states of low bond dimension for all eigenstates

Different blocks don’t talk.

Strange Spectral Statistics....

No level repulsion!
Can we use these eigenstates to check MBL?

Diagonalizing in our little block produce PGE (pretty-good eigenstates). Can we get great great eigenstates?
Need a property to filter out an eigenstate.

Entanglement: In a many-body localized phase, the eigenstates have ‘low’ entanglement: area law*

\[S = Tr[\rho_A \log \rho_A] \]

Key insight: Although eigenstates have low entanglement, superposition of eigenstates have larger entanglement.

\[\Psi = \alpha_0 \Psi_0 + \sqrt{1 - \alpha_0^2} \Psi_1 \]

We need a low entanglement filter!

Want the lowest entangled state close to a given energy.

* Bela and Chetan; Brian Swingle; Abanin, et. al

N=12 Delta=(0.05,10.5)
Average over 10 disorder realizations and 5 eigenstates
Getting a MPS

MPS are a good representation. How do we get them?

Typical DMRG: For a site produce an effective Hamiltonian H' and solve for the ground state of H'

Modified DMRG: For a site produce an effective Hamiltonian H' and choose the eigenstate of H' closest to the current energy of your state.

Also time evolution variants of these; easier to ‘analyze’ but general experience is diagonalization approach tends to be more accurate.
Other Eigenstates

New Approach: For a site produce an effective Hamiltonian H' and choose the eigenstate of H' closest to the current energy.

For a site produce an effective Hamiltonian H' and choose another eigenstate.
ETH

Delocalized phase by exact diagonalization (16 sites)
A first preliminary test of ETH: 24 sites!
Nearly degenerate states have very different local observables.
Failure of ETH!
Conclusion

- MBL is a phase where a local unitary transform makes you ‘almost’ block diagonal with extensive # of blocks.

- MBL is a phase with MPS eigenstates.
 - Blocks don’t talk => No ETH => No thermalization
 - Any eigenstate supports only local blocks (localized)
 - All eigenstates are (essentially) ground states
 - Area law
 - Possion level statistics

- We can explicitly produce the block diagonal basis and eigenstates.

- We can find very high quality eigenstates to test MBL on.
A many body localized phase ...

Doesn’t thermalize: like integrable system

Localized: not support over all basis elements

Block diagonal H where many-body basis elements are spatially local.

atypical eigenstates: low entanglement, like the ground state, odd spectral statistics
\[H = \sum_{i=1}^{L} [h_i S_i^z + J \sum \hat{S}_i \cdot \hat{S}_{i+1}] \]

\[h_i \in [-W, W] \]
\[|\tilde{\Psi}_G\rangle \]

\[|\Psi_G\rangle \equiv \sum |a_i\rangle |b_i\rangle \]

Basis:
\{ |a_1\rangle |b_1\rangle, |a_2\rangle |b_2\rangle, \ldots |a_9\rangle |b_9\rangle \}

\[|\Psi_G\rangle \equiv \sum |\alpha_i\rangle |\beta_i\rangle \]

Basis:
\{ |\alpha_1\rangle |\beta_1\rangle, |\alpha_2\rangle |\beta_2\rangle, \ldots |\alpha_9\rangle |\beta_9\rangle \}

\[l \quad \text{where} \quad 2^l = 2D^2 \]

Produce excitations on sites i,j,k,...

These are single particle excitations. How to get a two particle excitation?

I. Produce a quasi-particle on site i

II. Schmidt-decompose on site j, k, etc.

II. Use the Schmidt-vectors as the basis.
How should we understand these strange phenomena?

A local block diagonal basis is a unifying understanding
quasi-ptcls from site j come from this block.

quasi-ptcls from site i come from this block.

Basis of blocks = Schmidt decomposition of quasi-ptcls
produce second quasi-particle
produce second quasi-particle
another quasi-particle
one quasi-particle

schmidt-decompose
schmidt-decompose
How should we understand these strange phenomena?

A local block diagonal basis is a unifying understanding.