Motivation

Students take the plurality of their physics classes in undergraduate, but often don't really deeply understand physics until graduate school.

Approach

Four immersive projects

- Quantum Computing Simulator
- Renormalization Group on the Ising Model
- Topological Insulators
- Machine Learning

Project 1: Quantum computing simulator

Language: python

Students write code to take a quantum circuit description:

```
using a universal set of gates (i.e. Hadamard, Phase, CNOT)
```

and output the quantum state produced from the circuit.

They then figure out how to make gates not in their universal set which they turn into a simple quantum compiler.

Students proceed to write code to generate quantum circuits for arbitrary phase estimation.

```
and use phase estimation to factor numbers.
```

Project 2: Renormalization Group

Language: C++

Students write code to simulate Ising models on arbitrary graphs via Markov Chain Monte Carlo.

```
and using block-spin decimation
```

with ideas about the renormalization group.

```
computes the RG flow of the coupling constant J → J′
```

They identify the phases and critical points by fixed points of the RG flow and compute critical exponents.

Bonus: Simulated Annealing + Parallel Tempering

Project 3: Machine Learning

Language: C++

Students write a Hopfield network to measure the energy landscape and empirically determined its memory capacity.

```
Students write a Restricted Boltzmann machine
```

and discover it's just an Ising Model.

```
They then use it in an unsupervised capacity to learn digits.
```

Project 4: Topological Insulators

Language: python

Students implement a tight-binding model of graphene, and empirically determined its memory capacity.

```
see that there are multiple ways to gap out the Dirac cones,
```

and find that some of them have a Chern number and edge modes.

Course website: https://courses.physics.illinois.edu/phys498cmp/